TÉCNICAS CONSTRUTIVAS DE REVESTIMENTOS EXTERNOS: SIDING VINÍLICO, SMART SIDE E PLACA CIMENTÍCIA NO SISTEMA CONSTRUTIVO LIGHT STEEL FRAME

Letícia Roman¹ Claiton Rogério Zardo² Anderson de Camargo; Ezequiel Furini Puton³ **RESUMO**

Este trabalho tem como objetivo principal analisar a melhor técnica construtiva de revestimento externo entre Siding Vinílico SmartSide e a Placa Cimentícia no sistema construtivo Light Steel Framing. O método utilizado para realização deste estudo classifica-se como método indutivo, no que se refere ao delineamento de pesquisa, como experimental. Referente ao nível de pesquisa caracteriza-se por exploratória. Os instrumentos de coleta de dados para essa pesquisa foi observação, documentos e ensaios. A população alvo desta pesquisa atinge todos os revestimentos externos aplicáveis no sistema construtivo em LSF, e a amostra estudada foram definida em não probabilística intencional, delimitando-se em três tipos de revestimentos selecionados a serem comparados, Siding Vinilico, Smart Side e Placa Cimentícia. Quanto aos resultados da pesquisa, houve o acompanhamento da execução da parede em LSF com a aplicação dos revestimentos externos em Siding Vinilico, Smart Side e Placa Cimentícia. Afim de comparar os métodos construtivos, essa pesquisa teve como objetivo analisar o processo de execução dos 3 revestimentos. Para essa comprovação, foram desenvolvidos ensaios de custo, produtividade e resistência entre os revestimentos para comprovar a eficiência e o custo benefício de cada sistema, sempre respeitando as normativas para a realização dos testes. Foi possível identificar que os revestimentos atendem as normas de resistência e constatou-se a eficiência dos mesmos. A técnica do revestimento em Smart Side se torna a alternativa com menor custo economicamente e melhor resistência, rapidez, leveza e sem desperdícios de material. A sequência desse presente trabalho traz mais detalhes de tempo de execução, levantamento de custo e os ensaios para a conclusão desse pesquisa.

Palavras-chave: Light Steel Frame. Revestimento externo. Siding Vinílico. Smart Side. Placa Cimentícia.

1 INTRODUÇÃO

Com a crise no mercado da construção civil no Brasil a fim de buscar sistemas construtivos eficientes e a custo benefício, a estrutura metálica vem ganhando um grande espaço devido a sua agilidade de execução e por se tratar de uma construção limpa e leve. Em busca de produtividade e um retorno de investimento acelerado, empreendedores tendem a novos caminhos.

Oliveira (2012) assegura que a industrialização da construção civil, na qual as edificações são fabricadas em ambiente de fábrica, apresenta-se como uma solução viável e barata, já que os materiais reutilizados são selecionados e certificados, os processos produtivos

Ouceff Voca em evolução

ANAIS - Engenharia Civil

¹ Trabalho de conclusão de curso da Engenharia Civil, UCEFF. E-mail: leticiaromannn@gmail.com.

² Docente do curso de Engenharia Civil, UCEFF. E-mail: claitonz@gmail.com.

³ Docente do curso de Engenharia Civil, UCEFF.

são otimizados, a mão de obra treinada dentro da própria empresa, e os resíduos reduzido pelo aproveitamento do material feito dentro da própria indústria. Além disso, todos esses itens ligados acabam por gerar edifícios de alta qualidade e desempenho técnico acústico elevado.

Os revestimentos nesse sistema, apresenta a quebra de padrão que traz o intuito de novas tecnologias para buscar um nível de eficiência, conforto e, principalmente a prática de métodos construtivos que consiga atender o nicho de mercado, atendendo curto prazo com garantia de qualidade, bom desempenho, durabilidade e o custo final da obra.

O sistema construtivo *Light Steel Frame* (LSF) de acordo Rodrigues (2006), por estar associada aos conceitos de modernidade, inovação e das comprovadas vantagens desse método construtivo, se torna um fator considerável para tomada de decisão e satisfação do projeto e seus envolvidos.

A fachada ocupa uma posição de destaque no projeto e construção de uma edificação. Além disso, trata de um fator extremamente importante para a proteção da edificação contra agentes externos,

Vaz (2013) ainda afirma que o desempenho das vedações de fachada ganha mais destaque devido a maior conscientização da importância de sua participação no conforto térmico da edificação, aliada à necessidade de se construir edificações cada vez mais sustentáveis e com agilidade.

Entre os materiais de revestimento externo utilizados no sistema construtivo em LSF sejam eles Placa Cimentícia, *Siding Vinilico* e o *Smartside*, **qual apresenta maior eficiência como revestimento externo?** Diante desse cenário, o objetivo principal dessa pesquisa é analisar a melhor técnica construtiva de revestimento externo entre *Siding Vinílico SmartSide* e a Placa Cimentícia no sistema construtivo *Light Steel Framing*

2 REVISÃO TEÓRICA

A história do desse sistema construtivo, *Light Steel Frame*, teve início nos meados de 1810, quando nos Estados Unidos começou a conquista do território, logo em 1860, a migração chegou à costa do Oceano Pacífico. Naquela época, a povoação americana se multiplicou por dez e, para solucionar a demanda por habitações, recorreu-se à utilização dos materiais disponíveis no local (madeira), utilizando os conceitos de praticidade, velocidade e produtividade originados na Revolução Industrial com a utilização da madeira (RODRIGUES; CARLOS, 2006). Os autores Jardim e Campos (2014), ainda complementam a demanda por edificações. Utilizando conceitos como praticidade, velocidade e produtividade, fez-se uso à

época, do madeiramento das imensas reservas florestais que existiam, dando origem ao sistema construtivo conhecido como *Wood Frame*.

O uso da madeira na construção civil é largamente utilizado segundo Sacco e Stamato (2008, p.1), "Os sistemas construtivos leves com madeira tem sua origem no desbravamento do oeste norte-americano e sempre estiveram relacionados com uma construção rápida [...]".

A partir daí, as construções em madeira, conhecidas por *Wood Frame*, tornaram-se a tipologia residencial mais comum nos Estados Unidos. Aproximadamente um século mais tarde, em 1933, com o grande desenvolvimento da indústria de aço nos Estados Unidos, foi lançado na Feira Mundial de Chicago, o protótipo de uma residência em Light Steel Frame que utilizava perfis de aço substituindo a estrutura de madeira (FREITAS; CRASTO, 2006).

No Brasil, a construção civil ainda prevalece pela cultura caracterizada pela baixa produtividade e principalmente pelo grande desperdício. Afinal, a alvenaria ainda é muito utilizada como material estrutural, sendo que o método construtivo mais antigo que já demonstrou significativamente todas suas vantagens e desvantagens (CASTRO, 2007).

2.2 COMPOSIÇÃO DO SISTEMA LSF

O LSF de acordo com o manual da Vaz (2013), assim conhecido mundialmente, é um sistema construtivo de concepção racional, que tem como principal característica uma estrutura constituída por perfis de aço galvanizado formados a frio, que são utilizados para a composição de painéis estruturais e não estruturais, vigas secundárias, vigas de piso, tesouras de telhado e demais componentes. Por ser um sistema industrializado, possibilita construção a seco com grande rapidez de execução. Rodrigues (2006) complementa que o conceito principal do projeto segundo o sistema LSF é dividir a estrutura em uma grande quantidade de elementos estruturais, de maneira que cada um resista a uma pequena parcela da carga total aplicada.

Jardim e Campos (2014) afirmam ser um sistema construtivo aberto, que permite a utilização de diversos materiais, flexível, pois não apresenta grandes restrições aos projetos, racionalizado, otimizando a utilização dos recursos e o gerenciamento das perdas, customizável, permitindo total controle dos gastos já na fase de projeto; além de durável e reciclável. Com esse mesmo critério, Rodrigues (2006), afirma ser possível utilizar perfis mais esbeltos e painéis mais leves e fáceis de manipular.

No sistema LSF, pode ser utilizado qualquer sistema de fundação, porém o mais usual é o radier, visto que apresentam cargas menores em relação ao sistema construtivo convencional.

O conceito estrutural do sistema LSF consiste em dividir as cargas entre os perfis e também a utilização dos elementos que suportam as lajes e coberturas. Seus elementos trabalham bi-apoiados e, sempre que possível, devem transferir as cargas consecutivamente, ou seja, sem elementos de transição, até as fundações (RODRIGUES, 2006).

Para Santiago, Freitas e Castro (2012), a estrutura de piso em Light Steel Framing é composta por perfis de seção transversal Ue, denominados vigas de piso. Esses elementos são dispostos na horizontal, obedecendo a mesma modulação dos montantes, permitindo que suas almas permaneçam alinhadas.

2.2 FECHAMENTO VERTICAL NO SISTEMA LSF

As informações relacionadas ao fechamento vertical no sistema LSF foram divididas neste subtópico em quatro partes, sendo: Placas de OSB, Placas Cimentícias, Siding Vinílico e Smart Side.

2.2.1 Placas de OSB

A chapa de OSB, segundo a LP (2012), é uma chapa estrutural constituída por tiras de madeira, unidas com resinas resistentes à água, orientadas em três ou cinco camadas perpendiculares entre si e prensadas sob alta pressão e temperatura. A LP Indústria e Comércio SA. (2012, p. 02), apresenta que:

A sigla OSB vem do inglês e corresponde a *Oriented Strand Board*, que significa Painel de Tiras de Madeira Orientadas. Trata-se de um produto de grande resistência mecânica, versatilidade e qualidade absolutamente uniforme, que por suas características é tratado como um painel estrutural.

Segundo Santiago, Freitas e Crasto (2012), as placas de OSB, podem ser utilizadas como fechamento da face interna e externa dos painéis, para forros, pisos e como substrato para cobertura do telhado. Porém, devido as suas características, não deve estar exposto a intempéries, necessitando de um acabamento impermeável em áreas externas.

Tamaki (2015) complementa descrevendo que as chapas de OSB são formadas por lascas de madeira orientadas e prensadas e, no LSF, são utilizadas entre o revestimento e o perfil estrutural. São utilizados como reforço da parede no perímetro externo da edificação e, internamente, nas paredes que podem vir a receber cargas diferenciadas, como armários de cozinha, bancada de pia e algumas paredes da sala, por exemplo.

2.2.2 Placas Cimentícias

A NBR 15498 (ABNT 2014) define que a placa de fibrocimento é o produto resultante da mistura de cimento Portland, agregados, adições ou aditivos com reforço de fibras, fios, filamentos ou telas com exceção de fibras de amianto.

A mesma norma (2014), também define que as placas podem ser classificadas em Classe A ou Classe B, cabendo o fabricante a indicação de classe e categoria da placa. As primeiras são indicadas para aplicações externas sujeitas à ação direta de sol, chuva, calor e umidade. Elas ainda podem ser classificadas em quatro categorias segundo a resistência à tração na flexão.

2.2.3 Siding Vinílico

De acordo com Santiago, Freitas e Crasto (2012), o *Siding* e um revestimento de fachadas, composto de placas paralelas, muito comuns nas residências norte-americanas. O *Siding* como mencionado anteriormente pode ser vinilico que e feito com PVC, de madeira ou cimenticio.

Segundo Campos (2014), o *Siding Vinilico* é um revestimento em PVC para uso em fachadas externas. Esse tipo de revestimento deve ser instalado após a aplicação da membrana através de parafusos. É encontrado em réguas e possui uma série de componentes que garantem um acabamento adequado às construções secas. Podem ser instaladas horizontalmente ou verticalmente, além de possuir uma manutenção simplificada, sendo necessária apenas um a solução de agua com detergente e sabão liquido para manter o revestimento limpo.

Para a fachada final pode ser adotado o siding, que é composto de placas paralelas, podendo ser de vinílico (feito de PVC), de madeira ou cimentício. O *Siding Vinilico* possui o melhor desempenho e concepção de execução mais industrializada, sendo de fácil aplicação e não necessita de muitos cuidados de manutenção, pode ser pintado e sua limpeza pode ser feita com água e sabão (SANTIAGO; FREITAS; CRASTO, 2012).

2.2.4 Smart Side

De acordo com o IPT (2013), o sistema construtivo LP Brasil OSB em LSF e fechamento em *SmartSide* Painel é destinado à produção de unidades habitacionais unifamiliares térreas e isoladas. As paredes, com função estrutural, são formadas por quadros de perfis leves de aço zincado.

O manual da LP (2012), complementa que a produção do *SmartSide* é com tecnologia OSB prensados a altas temperaturas e pressionados com resina MDI em três camadas perpendiculares. Processo que assegura um índice elevado de resistência a chuva e umidade.

3 METODOLOGIA

O método utilizado para realização deste este estudo classifica-se como indutivo, baseado em pesquisas bibliográficas e estudos realizados em um projeto de comparativo de revestimento externo no sistema construtivo em LSF. Assim, Gil (2002) afirma que para que uma pesquisa seja concluída com êxito, mediante o agrupamento dos conhecimentos disponíveis e da utilização cautelosa de métodos, deve ser desenvolvida através de métodos, técnicas e outros procedimento dentro do padrão científico.

O nível de pesquisa aplicado foi a pesquisa exploratória tendo a preocupação de estudar o melhor revestimento externo para o LSF. De acordo com Gil (2010), a pesquisa exploratória se preocupa em familiarizar o problema com o leitor, torna-lo mais explícito. Possui um planejamento flexível, e seu conteúdo envolve levantamentos bibliográficos, entrevistar com pessoas que possuem experiência no tema e estudo de caso.

Esta pesquisa foi desenvolvida mediante a técnica experimental. No entendimento de Gil (2008), a pesquisa experimental constitui o delineamento mais prestigiado pelos meios científicos. Marconi e Lakatos (2010) explicam que a coleta de dados é a etapa que iniciam a aplicação dos utensílios e técnicas elaborados com o objetivo de efetuar o recolhimento das informações referentes a pesquisa.

As análises foram baseadas da seguinte forma: observado a execução uma parede de 1,44m² de área, mais especificamente, em seu tamanho padrão de chapas 1,20m x 1,20m seguindo toda a normativa referente a essas técnicas, sendo elas de LSF compondo os perfis metálicos, placa de OSB e de face externa chapa de placa Cimentícia, *Siding Vinílico* e *Smart Side*.

A partir disso, foi realizado o levantamento de custo dos 3 revestimentos e o comparativo entre eles aplicados na amostra realizada. Durante a execução, foi analisado o tempo de execução por metro quadrado em cada revestimento aplicado, ou seja, a produtividade.

Por fim, foi realizado o teste de corpo duro seguindo a norma, conjuntamente, os testes realizados, comparados e apresentados a fim de apresentar o que possui melhor desempenho, testes esses feitos na UCEFF localizada em Chapecó-SC.

A execução dos testes de revestimentos segue os critérios da normativa NBR 15.575-4 (ABNT, 2013). Na coleta de dados baseado em testes, executado o recolhimento de imagens das etapas realizadas de cada revestimento para facilitar o estudo. Essas etapas foram executadas com o intuído de propor o melhor revestimento no sistema construtivo em LSF.

A população alvo desta pesquisa atinge todos os revestimentos externos aplicáveis no sistema construtivo em LSF, e a amostra que foi estudada foi definida em não probabilística intencional, delimitando-se em três tipos de revestimentos selecionados a serem comparados, *Siding Vinilico, Smart Side* e Placa Cimentícia.

A técnica de análise utilizada após a realização da coleta de dados de forma quantitativa que conforme Richardson (1999), consiste pelo emprego de quantificação, tanto na coleta de informações tanto no tratamento pelas técnicas estatísticas.

4 APRESENTAÇÃO E ANÁLISE DOS DADOS

Com o objetivo de dar sequência ao desenvolvimento da pesquisa, nessa etapa o intuito foi verificar na pratica de como se dá o processo de execução das técnicas de instalações em uma parede de revestimento em *Smart Side*, revestimento em *Siding Vinílico* e, Placa Cimentícia no sistema construtivo em *Light Steel Frame*. As técnicas foram realizadas em uma parede de 1,20 m x 1,20 m totalizando 1,44 m², assim, verificando custos, produtividade e ensaio ao impacto desse sistema construtivo.

4.1 EXECUÇÃO PAREDE EM LIGHT STEEL FRAME

Através de acompanhando em fábrica, foi possível elaborar uma sequência de montagem da procedência da execução de montagem da parede em *Light Steel Frame*.

Para dar início a essa etapa, foi realizado a análise do projeto, que detalha a estrutura em perfis metálicos de uma parede com largura de 1, 20m e comprimento de 1, 20m.

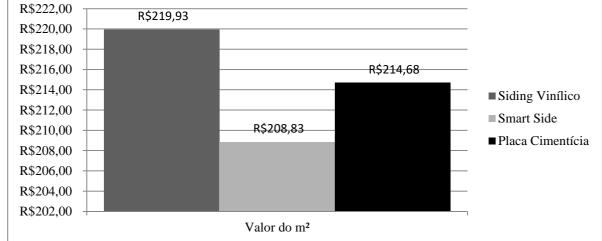
Seguindo os passos, de acordo com os autores Jardim e Campos (2014), a modulação é distribuída pelos perfis, respeitando a distância de 400 mm ou 600 mm entre os perfis. Neste caso, utilizado a distância entre 600 mm.

A montagem da estrutura, utilizado lã de vidro conforme apresenta a Imagem 17, que tem como objetivo o isolamento térmico, controle de perdas de calor em baixas temperaturas e ganhos na alta temperatura. Vaz (2013), traz a aplicação do material, aplicando no interior da estrutura, entre o fechamento interno e externo.

4.2 LEVANTAMENTO DE CUSTO

Para a realização do levantamento de custos foi feito orçamentos de todos os materiais que compõe uma parede em LSF. Nos testes, foram realizados levantamentos de quantidade de material por m² que está apresentado na Tabela 1.

Tabela 1- Materiais para levantamento de custo


Material	Unidade
Placa de Placa Cimentícia (1,20x2,40x9,5)	m²
Placa de SmartSide (4,88x0,20x9,5)	m²
Placa de Siding Vinílico (3,80x0,20)	m²
Perfis Metálicos	m²
Mão de Obra	m²
Placa de OSB	m²
Lã de Vidro	m²
Membrana Hidrófuga LP	m²

Fonte: Dados de pesquisa (2018).

Os valores dessa pesquisa foram feitos em cima de fornecedores na cidade de Curitiba-PR no mês de maio de 2018. Realizado todos os orçamentos, o Gráfico 1 apresenta o custo do m² para montagem de uma parede em LSF com todos os componentes, revestido em Siding Vinílico, SmartSide e a Placa Cimentícia. Para a realização desse comparativo foi utilizado à média dos valores dos materiais orçados.

R\$222,00 R\$219.93 R\$220,00 R\$218,00 R\$216,00 R\$214,68

Gráfico 1-Comparativo de preços do m² dos revestimentos externos

Fonte: Dados de pesquisa (2018).

O custo do m² do Siding Vinílico ficou no valor de R\$ 219,93. Aplicado na parede do módulo de teste para 1,44 m² o valor é de R\$ 316,69 reais. Com o revestimento em SmartSide obteve-se por orçamento o custo total de RS208,83 o m². No último orçamento, revestido com

Placa Cimentícia o custo do m² é de RS214,68. Analisando o Gráfico 1 de comparativo de preços, é possível verificar que o revestimento mais viável é o *SmartSide*

4.3 LEVANTAMENTO DE PRODUTIVIDADE

Para levantamento de produtividade de cada um dos método de execução, 3 profissionais receberam a mesma condição de trabalho. Executando em 1,44 m² de parede de cada tipo de revestimento e o tempo de cada aplicação foi cronometrada e tabelada, assim, foi possível obter a média de tempo de execução de cada técnica.

Para a execução dos testes, foi preparada a parede em LSF e aplicados os revestimentos na parede com os materiais necessários para aplicação, e acessórios para montagem. As execuções das atividades ocorreram em dias diferentes para cada profissional ocorrendo sem interrupções para cronometragem do tempo.

O revestimento *SmartSide* apresenta fácil instalação e rápida montagem, revestimento pode ser utilizado tanto interno tanto externo. O tempo médio de execução do revestimento *SmartSide* ficou em 00:19:45 por metro quadrado.

Para o revestimento em *Siding Vinilico* em comparação ao *SmartSide* apresentou mais facilidade na instalação. Por ser peças que se encaixam uma na outra, o nível é tirado da primeira peça, sendo aplicadas de baixo para cima encaixando e parafusando.

Para o revestimento Siding Vinilico o tempo estimado foi de 00:14:24 por metro quadrado.

As placas cimentícias vem em espessuras e dimensões diferentes. Para a realização desse teste, utilizado a placa de espessura 9,5mm de 1,20x2,40m. Como o trabalho trás o objetivo de aplicação, a peça foi cortada antes no tamanho de 1,20m x 1,20m e a aplicação nessa parede, nesse caso, foi relativamente rápida, analisando que não teve emenda entre as chapas. O revestimento com Placa Cimentícia teve o tempo estimado de 00:08:26 por m².

Com base nos dados coletados foi possível criar o Gráfico 2 para comparar os resultados da produtividade.

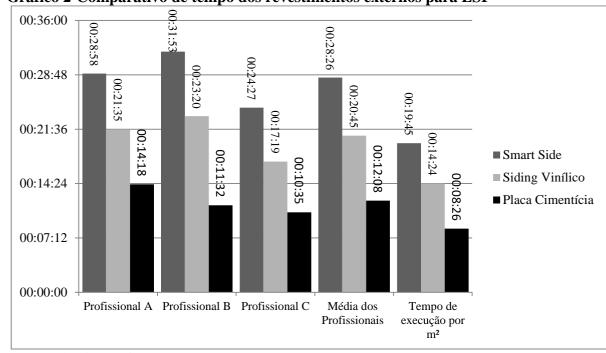


Gráfico 2-Comparativo de tempo dos revestimentos externos para LSF

Fonte: Dados de pesquisa (2018).

Analisando o tempo de execução dos revestimentos de cada técnica por metro quadrado, é possível avaliar que o revestimento em Placa Cimentícia, para este caso, apresentou o menor de tempo de execução e o *SmartSide* o maior tempo de aplicação.

4.4 ENSAIOS

Para apresentar as características de todos os métodos construtivos, foram realizados ensaios de resistência ao impacto dos revestimentos externos afim de comprovar o melhor revestimento para uma edificação.

As avaliações foram feitas de acordo com as exigências da normativa de desempenho (ABNT/NBR 15.575-4) que visa avaliar os componentes dos sistemas construtivos e garantir o desempenho do mesmo para segurança e durabilidade durante a sua vida útil.

Esse ensaio tem como objetivo verificar a resistência dos três revestimentos durante o impacto dos objetos contra a parede. Para que isso ocorra, foi aplicado 2 forças de 5 e 20 Joules simulando a energia contra a parede conforme requisito da norma.

Na realização deste teste, foi utilizado 2 esferas de aço maciço de 0,5 kg e 1,0 kg. Para dar início ao teste, foi fixado um suporte com gancho acima do corpo prova para que o pêndulo fique alinhado.

O pêndulo é solto em determinada distância e, segundo critérios da norma (ABNT 15575/2013), sob a ação de impactos de corpo duro, as paredes verticais externas (fachadas):

- a) Apresentar fissuras, escamações, delaminações ou qualquer outro tipo de dano (impactos de utilização), sendo admitidas mossas localizadas, para os impactos de corpo duro;
- b) Apresentar ruptura ou traspassamento sob ação dos impactos de corpo duro.

Os materiais utilizados para a realização desse testes foram:

- a) Esfera de aço 0,5 kg;
- b) Esfera de aço 1,0 kg;
- c) Trena;
- d) Gancho fixador;
- e) Marcador;

Para a esfera de 0,5 kg aplicado a energia de 5 J e respeitando a altura de 0,60 m e a distância de 1,0m para arremessar contra o corpo de prova. Para a esfera de 1,0 kg a altura utilizada de 0,80 m. Foram aplicadas duas forças contra a parede aplicada com revestimento *Siding Vinílico*.

Durante a realização do ensaio, foram verificadas possíveis patologias na região do impacto nas emendas das chapas em *Siding* apresentadas na Figura 1.

Fonte: Dados de pesquisa (2018).

Para esse revestimento, devido as emendas, utilizado 2 alturas para os golpes de cada esferas avaliando o impacto nas emendas das chapas e sem as emendas. Resultados esses, apresentados na Tabela 2.

Tabela 2-Resultados obtidos no teste de corpo duro no Revestimento Siding Vinílico

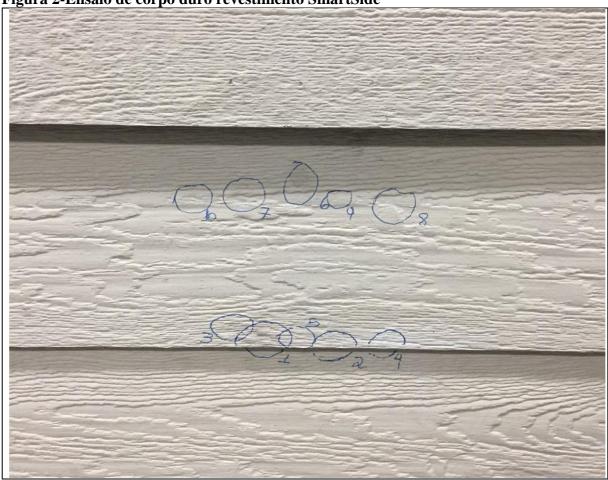
Sistema	Energia do Impacto (J)	Norma 15.575-4 Critérios de desempenho	Resultados	Nível de desempenho
Aplicação revestimento em Siding Vinílico	5	Não ocorrência de falhas inclusive no revestimento (estado limite de serviço)	Não ocorreram falhas que comprometeram o estado limite de serviço. Foram observadas mossas pequenas.	Aprovado com
	20	Não ocorrência de ruína, caracterizada por ruptura ou traspassamento (estado limite último)	Das 10 golpeadas, 3 ocorreram rupturas mas que não comprometem o estado limite	restrições

Fonte: Dados de pesquisa (2018).

A parede LSF com o *Siding Vinílico*, atendeu a normativa, porém com restrições nas emendas, onde não aguentou a peso e a aplicação da força em 3 das 10 golpeadas. A Tabela 3 mostra o resultado dos impactos.

Tabela 3-Resultados obtidos no teste de corpo duro no Revestimento SmartSide

Sistema	Energia do Impacto (J)	Norma 15.575-4 Critérios de desempenho	Resultados	Nível de desempenho
Aplicação revestimento em SmartSide	5 m	Não ocorrência de falhas inclusive no revestimento (estado limite de serviço)	Não ocorreram falhas que comprometeram o estado limite de serviço.	Aprovado
	20	Não ocorrência de ruína, caracterizada por ruptura ou traspassamento (estado limite último)	Não houve ruptura e traspassamento.	


Fonte: Dados de pesquisa (2018).

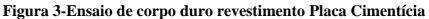
Assim como no revestimento *Siding Vinílico*, foram aplicadas as mesmas energias e alturas respeitando a norma na parede revestida com *SmartSide*.

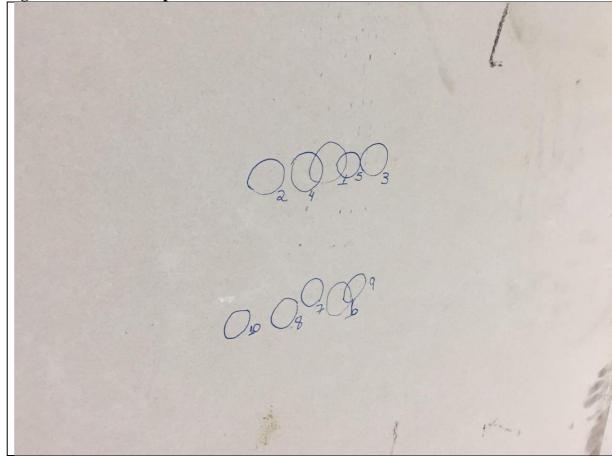
Diferente do teste do primeiro revestimento, o *SmartSide* não apresentou nenhuma incidência de patologias e apenas algumas mossas localizadas. Constando que, o revestimento na parede em LSF atende os requisitos da norma. A Figura 2 apresenta o resultado do ensaio da amostra.

Figura 2-Ensaio de corpo duro revestimento SmartSide

Fonte: Dados de pesquisa (2018).

A Tabela 4 apresenta os resultados obtidos no teste de resistência ao impacto na parede em LSF revestida com Placa Cimentícia.




Tabela 4-Resultados obtidos no teste de corpo duro no Revestimento Placa Cimentícia

Sistema	Energia do Impacto (J)	Norma 15.575-4 Critérios de desempenho	Resultados	Nível de desempenho
Aplicação revestimento em Placa Cimentícia	5	Não ocorrência de falhas inclusive no revestimento (estado limite de serviço)	Não ocorreram falhas que comprometeram o estado limite de serviço. Apresentou mossas localizadas	Aprovado
Traca Cincincia	20	Não ocorrência de ruína, caracterizada por ruptura ou traspassamento (estado limite último)	Não houve ruptura e traspassamento. Apresentou mossas localizadas	

Fonte: Dados de pesquisa (2018).

O revestimento em Placa Cimentícia também atendeu a normativa como apresenta a Figura 3.

Fonte: Dados de pesquisa (2018).

Com a realização de todos os revestimentos na parede em LSF foi possível fazer uma análise técnica para concluir qual obteve melhor resultado. A Placa Cimentícia e o *Smart Side* resistiu aos impactos e as mossas foram quase imperceptíveis, principalmente no *Smart Side*. O *Siding Vinílico* apresentou ruptura devido ao impacto ser direto na emenda das peças. Aplica a energia em uma altura maior, não ouve rupturas e mossas perceptíveis.

5 CONSIDERAÇÕES FINAIS

A realização desse trabalho permitiu, de forma mais especifica, analisar o material para ser utilizado no sistema construtivo LSF. Apresentou evidenciar diferenças entre os sistemas de revestimentos embora, o sistema apresenta uma certa resistência no mercado, as novas tecnologias estão cada vez mais dominando o mercado da construção civil.

Diante do exposto, conclui-se que o revestimento em *SmartSide* é a técnica com mais vantagens aplicados no sistema construtivo em LSF, apresentando orçamento mais viável a custo, benefício e resistência, além de apresentar uma fácil instalação e rápida montagem, o revestimento pode ser utilizado tanto externo como interno, sistema muito utilizado no exterior deixando um aspecto natural além da alta proteção contra cupim e fungos e uma garantia de fornecedores do material de até 20 anos. O revestimento em *Siding Vinilico* apresentou uma boa e rápida instalação, não tem o custo distante do *SmartSide*, e ambos sistemas são sistemas leves, sustentáveis, e tecnológicos agilizando o tempo da execução, mas apresentou desvantagem com o acumulo de sujeira.

As dificuldades encontradas ocorreu devido à falta de equipamentos próprios aplicados no sistema LSF e o armazenamento das peças estarem dentro de uma fábrica, ocorreu muito acumulo de sujeira nas peças.

Como sugestão para novas pesquisas, a busca de expor os revestimentos no tempo para avaliar melhor o desempenho diante o clima da região, e ensaio de isolamento acústico para avaliar questões de conforto e comodidade internamente de uma estrutura no sistema construtivo *Light Steel Frame*.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS.**NBR 15498**: Placa de fibrocimento sem amianto- Requisitos e métodos de ensaio. Rio de Janeiro. 2002.

_____.NBR 15575-4: Norma de Desempenho (sistemas de vedações verticais internas e externas) - Requisitos e métodos de ensaio. Rio de Janeiro. 2013.

CASTRO, E. M. L. Light Steel Framing para uso em habitações: construção metálica. 2007.

FREITAS, A. M. S; CRASTO, R. C. M. Steel Frame: Arquitetura. 1 ed. Rio de Janeiro: IBS/CBCA, 2006.

FREITAS, A. M. S; CRASTO, R. C. M; SANTIAGO, A. K. **Steel Frame: Arquitetura.** 2 ed. Rio de Janeiro: IBS/CBCA, 2012

GIL, A. C. Como elaborar projetos de pesquisa. 4 ed. São Paulo: Atlas, 2002.

GIL A. C. Como elaborar projetos de pesquisa. 5 ed. São Paulo: Atlas,2010.

IPT – INSTITUTO DE PESQUISAS TECONOLÓGICAS; **Referência Técnica Nº 017**. São Paulo: IPT, 2002.

JARDIM, G. T.C; CAMPOS, A. S. "Light Steel Framing": Uma aposta do setor Siderúrgico no Desenvolvimento Tecnológico da Construção Civil. São Paulo. 2014.

LP. Manual CES. Construção Energitérmica Sustentátvel. Steel.Frame, Wood Frtame. Catálogo Comercial LP.2012. Disponivel em:

https://www.lpbrasil.com.br/inc/download.asp?caminho=materiais...CES Ministério das Cidades. Política nacional de habitação. Brasilia: 2004. 103p. Disponivel em: http://www.capacidades.gov.br/biblioteca/detalhar/id/127/titulo/Cadernos+MCidades+4++Politica+Nacional+de+Habitacao. Acesso em: 12 set. 2017.

MARCONI, M.A; LAKATOS, E. M. **Fundamentos da metodologia cientifica.** 7. ed. São Paulo: Atlas. 2010.

OLIVEIRA, O. J. Gestão da qualidade. São Paulo: Thomson, 2006

OLIVEIRA, V. F. O papel da Indústria da Construção Civil na organização do espaço e do desenvolvimento regional. Congresso Internacional de Cooperação Universidade-Indústria. São Paulo, 2012.

RODRIGUES, F. C. Steel Frame: Engenharia. 1 ed. Rio de Janeiro: IBS/CBCA, 2006.

VAZ, D. **Construir Sustentável**. Construção Energitérmica Sustentável da LP na 2° Construction Expo. 2013.

